
RESEARCH ARTICLE

Field-Based Estimates of Global Warming

Potential in Bioenergy Systems of Hawaii:

Crop Choice and Deficit Irrigation

Meghan N. Pawlowski1☯, Susan E. Crow1☯*, Manyowa N. Meki2, James R. Kiniry3,

Andrew D. Taylor4, Richard Ogoshi5, Adel Youkhana5, Mae Nakahata6

1 Department of Natural Resources and Environmental Management, University of Hawaii Manoa, Honolulu,

Hawaii, United States of America, 2 Texas A&M AgriLife Blackland Research and Extension Center, Temple,

Texas, United States of America, 3 United States Department of Agriculture-Agricultural Research Service

Grassland Soil and Water Research Laboratory, Temple, Texas, United States of America, 4 Department of

Biology, University of Hawaii Manoa, Honolulu, Hawaii, United States of America, 5 Department of Tropical

Plant and Soil Sciences, University of Hawaii Manoa, Honolulu, Hawaii, United States of America, 6 Hawaiian

Commercial & Sugar, Puunene, Hawaii, United States of America

☯ These authors contributed equally to this work.

* crows@hawaii.edu

Abstract

Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective

only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of

replacing annual arable crops with perennial bioenergy feedstocks on net GHG production

and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG

flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass

biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass.

Evaluations were conducted at two irrigation levels, 100% of plantation application and at a

50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon

harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide

(CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even fol-

lowing fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits

that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by

efficient water and fertilizer management, including direct injection of fertilizer into buried irri-

gation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root

biomass increased rapidly following cultivation in grasses selected for robust root systems

and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold

greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but

increased soil C accumulation as proportionately more photosynthetic resources were allo-

cated belowground. In the first two years of cultivation napiergrass did not increase net

greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of

multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.
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Introduction

Renewable energy is of growing domestic and global interest due to the depletion of fossil fuel

reserves and concerns over energy security and climate change. Biofuels generated from agri-

cultural crops are a favorable substitute for conventional fuel sources. However, if inappropri-

ately managed, the production of biofuel feedstocks could be a net contributor to greenhouse

gas (GHG) emissions [1]. In Hawaii, large-scale sugarcane (Saccharum officinarum L.) produc-

tion was an important industry for more than a century, but in recent decades, there has been

a drastic decline in production due to a number of factors, among which are low sugar prices,

high labor costs, in particular, against competition from low cost foreign producers. In addi-

tion to this decline, concerns over local energy security, rising fuel costs, and competition for

water resources have spurred interest in shifting from sugarcane production to select candi-

date bioenergy crops that optimize water and nutrient use efficiency, while also offering the

potential to mitigate GHG emissions.

Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are the most important

gases responsible for climate change and global warming in terrestrial ecosystems [2,3]. The

high spatial and temporal variability of plant and microbial processes associated with the pro-

duction and consumption of GHGs on agricultural lands is a major uncertainty in both global

emission estimates and local effects within specific production systems [4]. Field-based quanti-

fication of these gases that incorporate the local environmental conditions, management prac-

tices, and crop types can be extrapolated to provide important regional data sets on the long-

term impacts and sustainability of renewable biofuel systems.

Tropical perennial grasses such as sugarcane and napiergrass (Pennisetum purpureum Schu-

mach.) are under consideration for bioenergy production due to their high productivity and

physiological characteristics that limit photorespiration and increase nutrient and water use effi-

ciency [5–7]. Sugarcane is a high-yielding, perennial grass of South Pacific origin that is well

known for supporting a drought resistant robust root system that can improve soil structure

and accumulate C on marginal lands [8–10]. Recent estimates by the Food and Agriculture

Organization (FAO) have reported that over 22 million hectares of the world’s agricultural

lands are dedicated to sugarcane production. Brazil, the largest sugarcane producing country,

allocates about 45% of its 8 million ha croplands to ethanol production [10,11]. Tropical sugar-

cane dry biomass yields may range from 25.9 Mg ha-1 yr-1 in Brazil to 40 Mg ha-1 year-1 in

Hawaii [12,13]. Napiergrass, another African origin warm-season perennial grass has been

found to produce more than 45 Mg ha-1 year-1 in Florida and, similarly, between 40 and 53 Mg

ha-1 year-1 in Hawaii [7,14,15]. However, under optimal conditions dry matter yields as high as

88 Mg ha-1 year-1have been recorded in El Salvador [7,16].

Sugarcane and napiergrass can maintain high biomass yields when managed as zero-tillage,

ratoon harvest systems. The ratoon harvest practice, which cuts the biomass near the surface

of the soil without disturbing the belowground root system to allow rapid vegetative regrowth,

is central to the net GHG balance of these systems due to no or reduced field-based operational

GHG emissions, decreased net GHG flux as a result of reduced soil disturbance or loss, and

increased belowground soil organic carbon (SOC) storage [1,7,9,16,17]. Tropical C4 grasses

are known to have the largest root biomass among agricultural crops and hence have the

potential to influence the flow of C and GHG flux in biofuel feedstock production systems.

Both sugarcane and napiergrass are water intensive species that have been shown to utilize

available water and nutrients by expanding their root systems during their growth cycles and

following harvest events [7,8,18]. Root biomass and plant residues have a direct effect on GHG

emissions from the soil surface; the respiration of live roots and mycorrhizae contributes to

CO2 efflux. Whereas, additional CO2, N2O and CH4 are produced through the microbial
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decomposition of dead roots and other organic matter in the rhizosphere. If gross primary

productivity, partitioning of fixed C belowground, and the C use efficiency of the soil micro-

bial community are high, then soil C accumulation can be rapid.

Designing sustainable sugarcane and napiergrass feedstock production systems for Hawaii

requires accurate information on their performance under water limited conditions, potential

SOC storage, and GHG emissions. Given the important contribution of roots to SOC, there

also is a need for reliable estimates of root biomass and root distribution down the soil profile.

An accurate accounting of total root C sources is critical for assessing the overall plant-derived

C inputs into the soil [19]. Sumiyoshi et al. (2016) recently reported the critical role of root

inputs and decomposition to building SOC in ratooned perennial grass systems on Oahu, yet

there remains a lack of data that can be used to fully understand the role and contribution of

root biomass to SOC in C4 cultivated grass systems across the tropics [20,21].

Globally, water use and sustainable intensification of feedstock production through crop

and management choices are two key issues of particular relevance when considering the envi-

ronmental impacts of a biofuel production system. To address these issues, the objectives of

this study were (i) to quantify and compare GHG fluxes under two potential biofuel feedstocks:

conventional two-year cycle sugarcane and ratoon harvested (every 6 months) napiergrass, (ii)

to compare sugarcane and napiergrass aboveground biomass, and quantify their respective

belowground root biomass and distribution down the soil profile, and (iii) to assess short-term

changes in SOC. The evaluations were conducted at two irrigation treatments: 100%, and 50%

of current commercial practice.

Materials and Methods

Study site and experimental design

The field experiment was located in the central isthmus of the island of Maui, Hawaii (20.89˚N,

156.41˚W) on Hawaiian Commercial and Sugar (HC&S) lands, the only remaining sugarcane

plantation in Hawaii at the time of the study. The study was carried out on private land; we con-

firm that the owner of the land, Alexander & Baldwin, Inc., gave permission to conduct the

study on this site. Currently (in 2016), HC&S is transitioning from conventional sugarcane pro-

duction to diversified agriculture to include some combination of pasture, forage production,

bioenergy feedstock, and an agricultural park. The experimental plots were installed in 2011 on

a highly weathered, very-fine, kaolinitic, isohyperthermic Typic Eutrotorrox of the Molokai

series. This soil is well drained, rocky, and has deep, well-defined horizons below the plow layer

[22]. Annual air temperature and precipitation for the experimental site were 23.4˚C and 241

mm during the study period, which are consistent with long-term averages for the area [23].

The elevation of the commercial field is 100 meters above sea level and has an area of 72

hectares.

The full experiment was designed as a strip-plot, group-balanced design with two factors,

irrigation and species with three replicates (blocks). Irrigation was applied at the standard

plantation rate (100%), and two deficit irrigation rates (75% and 50% of plantation standard).

The original trial included four species, sugarcane, energycane (Saccharum officinarum x Sac-
charum spontaneum), napiergrass, and sweet sorghum (Sorghum bicolor (L.) Moench). Irriga-

tion level was applied uniformly down a row of plots planted along a set of buried irrigation

lines. Within those lines, species were assigned randomly to plots in an orthogonal design for

the three blocks. For this study, two crops (sugarcane and napiergrass) were evaluated at two

irrigation levels (50% and 100%). From November 2011—October 2012, 1,245 mm water ha-1

were applied to the 100% plots and 633 mm water ha-1 were applied to the 50% plots, for an

actual deficit treatment of 50.8%.
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Field plots were established on June 26, 2011 in a recently harvested sugarcane field that had

been in a cane-on-cane rotation for over 100 years. Each subplot had an area of 67.1 m2. The sug-

arcane plots were planted with seed cane, variety HA65-7052 supplied by HC&S. The napiergrass

seed crop was supplied from a harvested population at the University of Hawaii’s research station

in Waimanalo, Oahu. To control weeds, a pre-emergence herbicide mix containing atrazine

(1-Chloro-3-ethylamino-5-isopropylamino-2, 4, 6-triazine), 2, 4-D (2, 4-Dichlorophenoxyacetic

acid), Prowl ((N-1- ethylpropyl)-3, 4-dimethyl-2, 6 dinitrobenzenamine), Rifle (3, 6-dichloro-

2-methoxybenzoic acid), and Velpar (3-cyclohexyl- 6-dimethylamino-1-methyl-1, 3, 5-triazine-2,

4(1H,3H)-dione) was applied once three weeks after planting. Each plot received a total of 345 kg

N ha-1 (as liquid urea: 46-0-0) applied through the drip irrigation system monthly once the crops

were established and concluded after 10 months. The timing and rate of urea application were

optimized for the two-year sugarcane crop and were based on current HC&S plantation prac-

tices. The napiergrass plots received the same amount of fertilizer as the sugarcane plots. Deficit

irrigation treatments were postponed during all fertilizer application events.

Due to an initial crop failure caused by insect damage, the napiergrass plots were replanted

on September 16, 2011, 87 days after the initial planting. To ensure initial germination and

survival, irrigation was applied weekly until all of the plots were established. Deficit irrigation

treatments were then applied to the field from November 13, 2011. The napiergrass plots were

ratoon harvested four times during the study period; at 6 months on March 13, 2012, at

approximately 12 months on September 25, 2012, at 18 months on March, 13, 2013, and finally

on May 15, 2013 when the surrounding commercial sugarcane field was harvested.

Environmental measurements

Two weather stations (HOBO logger model H-21, Onset Computer, Bourne, MA, USA) were

installed in the experimental field. Each station recorded hourly measurements of precipita-

tion, solar radiation, wind speed, relative humidity and air temperature. In addition, soil tem-

perature and moisture were collected concurrently with the flux measurements using a

Stevens Hydra Probe II soil sensor (Stevens Water Monitoring Systems, Inc.). Water filled

pore space (WFPS) at a soil depth of 5 cm was calculated from soil moisture data collected by

the Hydra Probe using the following equation:

WFPS ð%Þ ¼
Vol ð%Þ

1 �
r ðg cm� 3Þ

2:94 ðg cm� 3Þ

ð1Þ

where ρ is bulk density specific to the field soil (1.35 g cm-3), Vol is volumetric water content,

and 2.94 is the particle density of a similar Maui Oxisol soil [3,24].

Gas flux measurements

Soil surface gas flux measurements were collected using custom static vented chambers as

specified in the GRACEnet (Greenhouse gas Reduction through Agricultural Carbon

Enhancement Network) protocol [25]. Each chamber was constructed out of polyvinylchloride

(PVC) material (15.24 cm diameter x 15.5 cm tall) and included a permanently installed collar

buried to a depth of 8 cm and a fitted styrene cap used only during sampling events. Caps were

designed to limit leakage and minimize disturbance associated with sample removal. A total of

six collars were installed within each experimental plot; three within the row, and three within

the inter-row. Installation occurred on September 26, 2011 and collars were allowed to settle

for 23 days prior to the first sampling date. Samples were collected by sealing each chamber

and using a 10 mL polypropylene syringe and extracting 8 mL of headspace air through a
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septum on the styrene lid at 0, 15, 30, 45, and 60 minutes after chamber closure. Each gas sam-

ple was injected into an evacuated Exetainer1 (Labco Limited, UK) fitted with a Doubled

Wadded Teflon/Silicon septa (Labco Limited, UK) for short-term storage. Samples were ana-

lyzed using a Shimadzu GC-2014 Gas Chromatograph (Shimadzu Scientific Instruments,

Inc.). Flux rates were calculated by assuming a linear change in gas concentration over time

[26,27]. Row and inter-row flux measurements were averaged together to determine represen-

tative plot treatment means for each species [25,28].

Mid-morning flux measurements were collected at least once a month from October 20,

2011 to October 5, 2012. In addition to the monthly flux measurements, samples were col-

lected consecutively for 8 days following a fertilizer application event on April 27, 2012 and for

a 5-day interval for 30 days following napiergrass harvest events on March 15, 2012.

Global warming potential

All GHGs were assigned a global warming potential (GWP) value based on their radiative effi-

ciency relative to that of CO2 over a 100 yr-1 time scale as established by the IPCC (2007):

when the GWP of CO2 = 1, then the GWP for N2O and CH4 are 298 and 25 respectively

[3,4,20,27]. To assess the overall impact of N2O and CH4 on the GHG budget from these two

crops, their flux values were converted into CO2 equivalents by multiplying the cumulative

flux of each gas on an annualized basis by its GWP ratio; these values were then totaled for

each species and irrigation treatment level as described by Smith et al.[27]. For many agricul-

tural systems, the difference between net C uptake by plants and losses of C from crop harvest

and from the microbial oxidation of crop residues and soil organic matter are reflected pre-

dominantly in changes in soil organic C [29]. Therefore, in net GWP accounting, net CO2 flux

is calculated on the basis of the change in soil C stock and CO2 costs of the agronomic inputs

[29–31].

Baseline soil sampling

Initial soil sampling was conducted in June of 2011. Soil cores were collected in 20-cm depth

increments up to a vertical depth of 2.4 m. Cores were extracted using a standard wet core dia-

mond tipped drill bit with an internal diameter of 7cm (Diamond Products Core Borer, Elyria,

Ohio, USA). Each core barrel was inserted into the soil by a rotating hydraulic drill to minimize

compaction within the barrel and to ensure accurate depth measurements. Soil samples were

frozen at field moisture conditions until laboratory analysis. Soil samples were sieved at<2 mm

and dried for 48 hours at 105˚C. Subsamples were ground to pass through a 250 micron sieve

for heterogeneity, weighed, and analyzed for C and N concentration by combustion using a

Costech ECS 4010 CNH Analyzer (Costech Analytical Technologies, Inc., Valencia, CA, USA).

Root biomass sampling and soil carbon change

Sugarcane and napiergrass root biomass and distribution were determined at end of year 1

and year 2 using a destructive root sampling technique [7]. Three soil cores (65-mm inner

diameter) were collected to a depth of 100 cm in 20 cm increments from the center plant row

of each plot, and adjacent to a live clump of sugarcane or napiergrass. Soil samples were air

dried, and sieved using a standard 2 mm sieve. To estimate root biomass in each sample,

coarse live and dead roots greater than 2 mm were collected from the sieve surface and added

to any remaining identifiable roots that were hand picked from the soil that passed through

the sieve. All roots were dried at 65˚C and weighed. Subsamples of soil (that passed through

the 2 mm sieve) from the corresponding soil cores were oven dried, homogenized, weighed,
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and analyzed for a change in soil C concentration from the baseline soil data. Soil C stock was

determined using the equivalent soil mass method [32].

Statistical analysis

Differences in gas flux rates by species and irrigation level were analyzed statistically using

MINITAB 16 (Minitab Inc., State College, PA). A significance level of p = 0.05 was established

for all tests. Maximum likelihood repeated measures ANOVA using a compound symmetry

covariance structure was used to determine these effects over time; where species and irriga-

tion levels were considered fixed factors, replicate blocks were treated as random, and date of

sampling was considered the repeated factor. Gas flux following harvest and the targeted fertil-

izer application events were analyzed separately in the same repeated measures ANOVA for-

mat. All N2O flux data was log transformed to correct for non-normality and severe skew. No

other transformations on the flux data were necessary, and unless otherwise stated, basic

ANOVA assumptions were met. Cumulative annual fluxes for GWP assessment were esti-

mated using linear interpolation between sampling dates. A least-squares ANOVA was used to

test the effect of species and irrigation levels on soil core root biomass and on above ground

biomass. All root biomass data was log transformed to correct for non-normality and skew.

When significant, Tukey-Kramer post-hoc analysis was used for comparison of treatment

means for fluxes, soil C, and root biomass.

Results and Discussion

Monitored water, temperature, and soil GHG flux

Precipitation was low during the study period and irrigation provided most of the water inputs

to the system (Fig 1A). The highest soil WFPS was recorded during peak irrigation events (Fig

1B). Although precipitation events were infrequent and generally resulted in minimal rainfall, a

significant positive correlation was found between WFPS and precipitation (p� 0.001; r2 =

0.14). Mean WFPS values ranged from 38% to 50% during the study period and did not differ

between the species. Deficit irrigation effects on WFPS were dependent on date (p = 0.002), but

for the majority of the sample dates WFPS was lower under the deficit treatment. Although the

water deficit was 50%, the WFPS was reduced by only 4% and the soil moisture remained within

the range for microbial activity associated with the production and consumption of GHG [33].

The range of soil temperatures found during this study was narrow compared to similar

studies conducted in temperate environments [28,34,35]. Mean soil temperature for the study

period was 28 ± 0.29˚C and ranged from 24–36˚C (Fig 1C). This range is consistent with the

tropical geography, subtropical climate, limited seasonal variation in the saddle of Maui (±
5˚C), and consistent elevation between the treatment plots [36]. Additionally, sampling peri-

ods were restricted to the hours between 0700 and 1100 to control for significant variation in

diurnal temperatures. Soil temperature varied by date (p� 0.0001) but did not differ between

the species or irrigation treatment (Fig 1C).

Overall, soil CO2 flux was the greatest source of GHG in this study (Fig 1D). Consistent

with the isohyperthermic, sub-tropical climate, seasonal patterns of CO2 flux were minimal

during the study period. Soil CO2 emissions were positively correlated to air temperature

(p< 0.001, r2 = 0.09) and total precipitation (p< 0.004, r2 = 0.08) but had no significant rela-

tionship to WFPS or soil temperature. The lack of relationship between soil temperature and

CO2 emissions, even as one existed between air temperature and CO2 emissions, suggests a

direct control of root (autotrophic) respiration on net CO2 flux. Air temperature was not sig-

nificantly correlated to soil temperature, suggesting a strong buffering effect of dense vegeta-

tion on the air-soil interface. The subtropical climate and irrigation schedule may have
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provided optimal soil temperature and moisture conditions for a baseline microbial (hetero-

trophic) respiration rate throughout the study. Given that there was no correlation between

soil temperature and respiration, heterotrophic respiration may have remained constant while

autotrophic respiration increased with air temperature as the plant itself was the direct mecha-

nistic connection between canopy air temperature and soil respiration. Reduced irrigation

resulted in lower CO2 emissions compared to the 100% plots (p = 0.09). With the exception of

one month, sugarcane plots exhibited significantly lower CO2 emission than the napiergrass

(p = 0.06, for the time and species interaction). Mean fluxes were 156 ± 6.8 mg CO2 m-2 hr-1

for napiergrass and 112 ± 4.1mg CO2 m-2 hr-1 for sugarcane.

CO2 flux in this study was lower than fluxes reported for conventionally managed sugar-

cane on an Oxisol in Brazil [37] and for other perennial grasses. For example, values reported

for Miscanthus production in England averaged around 230 mg CO2 m-2 hr-1[34]. There have

been no published values for CO2 emissions under napiergrass to date. Soil temperature was

not a significant factor in the production of CO2 in this study, which was not surprising con-

sidering the limited range in average temperatures during the sampling period. Diurnal varia-

tion in CO2 emissions has been well studied and has been found strongly linked to air and soil

temperatures but due to the tropical nature of our system and relatively small differences in

day and night temperatures large variations were not expected. In light of this expectation, this

study focused on mid-morning emissions, which limited the influence of extremes in tempera-

tures and represented the average daily condition [38].

Monthly fluxes of N2O were low and constant throughout the sampling period; no clear

seasonal trends in N2O emissions were present (Fig 1E). There was a significant positive corre-

lation between soil N2O emissions and soil WFPS (p< 0.0001), but no relationship between

N2O flux and soil temperature. A significant spike in N2O flux occurred in April (p = 0.022 for

time effect) coinciding with a fertilization event. Matson et al. (1996) reported similar, very

low N2O flux from commercial sugarcane fields on Maui with short-lived spikes in flux follow-

ing fertilization (see next section for a more detailed fertilization effect discussion). Fluxes

from napiergrass were approximately 70% higher than sugarcane; mean N2O flux was

2.49 ± 0.59 μg N2O m-2 hr-1 for napiergrass and 1.46 ± 0.29 μg N2O m-2 hr-1 for sugarcane

(p = 0.047). There was no significant irrigation effect on the rate of N2O emissions from these

plots on a monthly basis.

Flux of N2O in this study was consistent with that from similar perennial bioenergy systems

[3,34,39]. Nitrous oxide flux was significantly influenced by WFPS, which is consistent with

other studies that found high soil moisture responsible for N2O production due to increased

rates of nitrification and denitrification [39]. The actual pathway for producing N2O in these

soils is challenging to discern. Likely, N2O is a result of both of these processes within the

range of WFPS that dominates in these soils.

Methane uptake, or oxidation, was the predominant CH4 process during this study (Fig

1F). Irrigation had no effect on CH4 flux but there was a significant species and time interac-

tion (p = 0.001). The lowest CH4 uptake rates were measured on the napiergrass plots 15 days

after harvest (-22.71 μg m-2 hr-1 for 50% and -19.64 μg m-2 hr-1 for 100%); a significant increase

in oxidation was noted during this time (P = 0.008). Sugarcane had similarly large negative

fluxes (-19.72 and -18.57 μg m-2 hr-1) but these occurred in January and could not be explained

by a disturbance or harvest event for this crop.

Fig 1. Time series for environmental variables and gas fluxes. Precipitation, irrigation (a), soil water filled pore space (b) and

temperature (air and soil) (c), and greenhouse gas flux (d-f) for one production cycle of commercial field #609 at HC&S. Mean values

(± one standard error) are shown for static chamber measurements of CO2 (d), N2O (e), and CH4 (f) flux.

doi:10.1371/journal.pone.0168510.g001
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A negative flux (or increasing uptake) in upland agricultural systems generally indicates

that methane oxidation from the atmosphere is taking place in these soils [33,34]. There have

been very few site-specific or regional datasets collected on CH4 flux in sugarcane and none on

napiergrass. But, methane oxidation has been reported in several perennial grass systems with

comparable rates to ones found in this study: -2.5 μg m-2 hr-1 for Miscanthus in NE England

[34], -6.0 to -2.0 μg m-2 hr-1 for Miscanthus in SW Germany [3] and 0 to -1.14 μg m-2 s-1 [39]

and 1 μg m-2 s- 1 for sugarcane in Queensland, Australia [40].

Targeted GHG flux after harvest and fertilization

During ratoon harvest, a net increase in soil CO2 flux was expected due to CO2 losses through root

turnover and disruption of the rhizosphere that were greater in magnitude than the decrease due

to reduced plant activity. Further, because available water promotes nitrification and associated

gaseous losses, it was expected that the soil N2O losses would be reduced from the deficit irrigation

compared to the full, 100% irrigation level. Intensive gas flux sampling during the 15 days follow-

ing a March 2012 harvest event tested this hypothesis. Within a day of the napiergrass harvest, soil

CO2 emissions rapidly increased by 35% for the deficit irrigation and by 51% for the 100% irriga-

tion treatments to means of 243.6 ± 45.1 mg CO2 m-2 hr-1 and 273.2 ± 60.3 mg CO2 m-2 hr-1

respectively (Fig 2A). Thereafter, soil emissions dropped to 133.8 ± 11.9 mg CO2 m-2 hr-1 for the

50% treatment and 136.8 ± 12.5 mg CO2 m-2 hr-1 for the 100% after 15 days.

The unexpected overall reduction in CO2 flux for napiergrass in the weeks following har-

vest, in fact, likely is responsible for the only date reported in the previous section (Fig 1D)

Fig 2. Gas fluxes peak following harvest. CO2 (a) and N2O (b) flux following harvest; values are means

(± one standard error).

doi:10.1371/journal.pone.0168510.g002
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where monthly sugarcane CO2 emissions were greater than napiergrass. A reduction in N2O

flux from the 50% irrigation compared to the 100% irrigation occurred only the first day post-

harvest (p = 0.009 for the time and species interaction) (Fig 2B). The disturbance effect of har-

vest was a short-term reversal of the long-term trends in flux, and is likely to have minimal

impact overall on the GHG balance of the system.

CO2 flux rates increased substantially following harvest of the napiergrass plots. Although

short lived, this significant increase may have been an immediate result of root response to a

shift in aboveground plant physiology. A similar increase in CO2 production following harvest

was found in Miscanthus grown in Germany [3] where an increase of approximately 300 mg

m-2 hr-1 was measured after harvest but returned to previous emission levels within one week.

Harvest frequency could have a significant effect on the overall soil CO2 emissions if root res-

piration was increased during these events or if root dieback occurred, which would stimulate

decomposition.

In many agricultural systems, inefficient water and fertilizer application result in substantial

gaseous losses of N2O [4,41,42], thus it was hypothesized that N2O flux would increase follow-

ing fertilization for both species, but less so under deficit irrigation. This hypothesis was tested

by intensive daily measurements of N2O flux for nine days following the application of fertil-

izer through the buried drip irrigation lines in April 2012. In contrast to the low monthly

means, large N2O emissions were measured following fertilization (Fig 3). For both species,

emissions rose within 24 hours of fertilizer application and rapidly peaked on the 3rd day with

average rates of 15.87 and 45.95 μg N2O m-2 hr-1 for napiergrass 50% and 100% respectively

and 55.45 and 103.96 μg N2O m-2 hr-1 respectively for sugarcane. Emissions returned to pre-

fertilization levels by day six. Sugarcane plots emitted more than double the amount of N2O

during this event than the napiergrass and emissions were significantly greater under the

100% treatment (p = 0.02 for species and p = 0.09 for treatment). Mean emissions were

approximately 6.51 ± 1.27 and 13.57 ± 2.80 μg N2O m-2 hr-1 for napiergrass and sugarcane

respectively over the nine days.

On average, soil N2O flux was greater for napiergrass than sugarcane, except immediately

following fertilization (Fig 1E). After fertilizer application, a short-lived but measureable peak

in N2O occurred for the sugarcane (and not napiergrass) (Fig 3). This short-lived spike caused

Fig 3. N2O flux increases after fertilization. N2O flux following fertilization; values are means (± one

standard error).

doi:10.1371/journal.pone.0168510.g003
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a 100% increase in emissions from the previous day. Even though the high fluxes did not last

for more than 24 hours, the magnitude of this increase is exacerbated due to the relatively

small fluxes found during the rest of the year. In general, losses of N2O from these soils were

low during the study period and ranged from ~0 to 10 μg m-2 hr-1 when targeted harvest and

fertilizer events were not included.

Greenhouse gas balance

Soil N2O and CH4 fluxes were much lower in magnitude than CO2 during this study, but their

potential to trap infrared radiation and offset the overall balance between these gases is much

greater. In order to compare the impacts of these cropping systems and treatment effects on the

net emissions to the ecosystem, N2O and CH4 were converted to CO2 equivalents (CO2eq) based

on the IPCC 100-year projections. No statistically significant differences in total CO2eq were

found between the species or irrigation and the mean annual CO2 eq emissions were 9.05 ± 3.40

Mg ha-1 yr-1. For the individual gases: The annualized data for CH4 found napiergrass to have

higher rates of consumption than sugarcane at both irrigation treatment levels. Highest rates

were found under the Napier 100% treatment -0.149 ± 0.002 Mg CO2eq ha-1 yr-1 and the lowest

-0.072 ± 0.003 Mg CO2eq ha-1 yr-1 were found under sugarcane 50% irrigation. The GWP of N2O

was also highest under the Napier crop at 100% irrigation (0.227 ± 0.002 Mg CO2eq ha-1 yr-1) and

lowest under sugarcane at 50% irrigation (0.116 ± 0.004 Mg CO2eq ha-1 yr-1). The net CO2 equiv-

alents between CH4 and N2O was positive for each system but were found to be lowest in sugar-

cane at the 50% irrigation treatment (0.044 Mg CO2eq ha-1 yr-1).

Replacing fossil fuel with biofuel is only environmentally viable if the net GHG footprint

of the production system is reduced. One component of that system-level balance is the

effect of replacing annual arable crops with perennial bioenergy feedstocks on net GHG

production. Multiple recent studies have shown that temperate perennial bioenergy crops

only reduce measured GHG emission compared to annuals if they are not fertilized

[34,43,44]. In Brazil, maintaining N amendment rates and improving nitrogen use effi-

ciency (NUE) through genetic improvement and better management practices are critical

to increasing biofuel production sustainably [45]. In these Brazilian systems, N losses to

leaching and N2O emission can be as high as 5.6% of added N. In this study, gaseous losses

were consistently very low because of efficient fertilizer and irrigation practices in use on

the plantation. Buried irrigation lines through which the fertilizer was applied could be

responsible for mitigating large losses of N2O in these soils by targeting nutrient addition to

root zone and minimizing surface-based losses [46]. During the intensive measurements

immediately following fertilization, approximately 0.1% of added N to the system was lost

under the napiergrass compared to approximately 0.2% under the sugarcane (Fig 3). On an

annualized basis, out of the 345 kg N ha-1 added to the experimental plots in the first year,

approximately 6.79 kg N in N2O ha-1 yr-1 was lost to the atmosphere from the soil, which is

around 2% of the total N applied to the whole system. This value is considerable lower than

the 3–5% losses generally expected from agricultural sites [4,41]. This N balance suggests

that during fertilization, the plantation is adequately managing their water and crop

resources to minimize N lost from the system.

There have been several recent studies that suggest napiergrass has the capacity to fix bio-

logically available nitrogen (BNF) in soils that receive no fertilizer inputs [47,48]. In de Morais

et al. (2012), napiergrass accessions were able to obtain between 36 to 132 kg N ha-1 yr-1 from

BNF on an agricultural Ultisol in Brazil. The potential to exploit this crop characteristic and

minimize fertilizer inputs to these systems should be explored further to address the long-term

sustainability of biofuel agriculture especially, if napiergrass is chosen as a feedstock.
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Yield and root biomass

Dry biomass yields for the 100% irrigation treatments were comparable to similar studies in

which ample rates of nutrients and irrigation were applied; e.g., 45 Mg ha-1 for napiergrass in

Florida [49] and 86 Mg ha-1 year-1 for sugarcane in Brazil [13]. The highest yielding plots at

100% irrigation after the 2-yr crop cycle were sugarcane (73.9 ± 10.2 Mg ha-1) followed by

napiergrass (47.7 ± 5.8 Mg ha-1). However, a high coefficient of variation in one of the replicate

sugarcane plots resulted in these differences being statistically non-significant. In all plots, the

100% treatments accounted for significantly greater total yields after 2-years of growth

(p = 0.012). The 50% deficit irrigation treatment caused a 60% reduction in yield for sugarcane

(to 29.4 ± 3.9 Mg ha-1) and a 31% reduction in yield for napiergrass (to 32.9 ± 4.6 Mg ha-1).

Species did not affect root biomass, but deficit irrigation decreased roots for both sugarcane

and napiergrass in the first year (p = 0.003) (Table 1). Root biomass in both species declined

from the first to second year (p = 0.0001). The majority of root biomass was located within the

surface layers of the soil profile and decreased with depth (Fig 4). In year one, more than 74%

of root biomass for both species was in the top 40-cm. In year two, these estimates declined to

56% for napiergrass but increased to 77% for sugarcane. Other studies have reported similar

patterns with depth for both napiergrass [7,49] and sugarcane [8,50,51]. The buried drip irriga-

tion system and fertigation (i.e., injection of soluble fertilizer through the irrigation lines) at

HC&S likely reduced the need for an extensive deep root system. During root sieving, observa-

tional differences were noted between the two species; sugarcane had more coarse roots in the

surface depths whereas the napiergrass seemed to produce large amounts of very fine roots

that were under-represented in the mass-balance approach. These differences could be attrib-

uted to the morphological differences between the species or to rooting response of napiergrass

following a harvest.

The 50% deficit irrigation treatment caused a 13% decrease in root biomass for sugarcane

and a 38% decrease in napiergrass; this pattern was consistent at all depths (Fig 4). These mod-

est reductions compared to the greater declines observed in the aboveground yield suggest

greater allocation of resources belowground under deficit irrigation. Perennial grasses produce

lengthy root structures that support plant growth and function during times of drought and

the root response may have extended even deeper than our sampling to 1m [7,52]. Genotype-

specific root distribution of Miscanthus influenced soil C sequestration over 14 years at the

Rothamsted Farm in England as part of the European Miscanthus Improvement Project, rein-

forcing the importance of making system-specific estimates of root distribution and turnover

[53].

Table 1. Total stocks in above and belowground pools.

Napiergrass Sugarcane

(Mg ha-1) 50% 100% 50% 100%

Yield Yr 1 21.45 ± 3.90 33.06 ± 3.75 n.a. n.a.

Yr 2 11.45 ± 1.20 14.60 ± 2.06 29.39 ± 3.91 73.92 ± 10.20

Total 32.90 ± 4.63 47.66 ± 5.77 29.39 ± 3.91 73.92 ± 10.20

Root biomass Yr 1 4.77 ± 0.25 8.72 ± 1.60 5.48 ± 1.13 7.79 ± 1.08

Yr 2 2.57 ± 0.40 3.44 ± 0.17 5.49 ± 0.99 5.16 ± 2.97

Δ Soil C stock BL-yr 1 42.08 ± 6.98 31.03 ± 7.25 19.00 ± 10.07 25.70 ± 1.32

Yr 1-yr 2 -7.36 ± 1.45 -1.89 ± 3.08 15.44 ± 12.32 0.97 ± 7.28

BL-yr 2 34.71 ± 6.27 29.14 ± 5.36 34.43 ± 19.04 26.67 ± 7.97

Crop yield, root biomass, and soil C change: baseline to year 1, year 1 to year 2, and total over two years. Values are means ± one standard error.

doi:10.1371/journal.pone.0168510.t001
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Soil carbon

The baseline soil C stock in the equivalent soil mass of 18,000 Mg ha-1 (that occurred in the

top 1.0–1.4 m of soil), determined from the mean of ten soil cores taken a priori from the

planned field site, was 158.1 ± 6.9 Mg C ha-1. Soil C stock increased substantially from the

baseline in the two-year period following cultivation in sugarcane and ratoon harvested, zero-

tillage napiergrass (Fig 5). In just the first year, the total increase was 12.0% and 16.3% for sug-

arcane (50% and 100% irrigation respectively) and 26.6% and 19.6% for napiergrass (50% and

100% irrigation respectively). Soil C stock continued to increase from yr-1 to yr-2 in sugarcane

but declined somewhat in napiergrass (Table 1) as equilibrium in the root system and associ-

ated rhizosphere and carbon inputs was reached following multiple ratoon harvests. The net

percent increase over two years was 21.8% and 16.9% for sugarcane (50% and 100% irrigation

respectively) and 22.0% and 18.4% for napiergrass (50% and 100% irrigation respectively). The

mean annual increase in soil C stock over the first two years was 17.2 ± 9.5 and 13.3 ± 4.0 Mg

C ha-1 yr-1 for sugarcane (50% and 100% irrigation respectively) and 17.4 ± 3.1 and 14.6 ± 2.7

Mg C ha-1 yr-1 for napiergrass (50% and 100% irrigation respectively).

Tropical ecosystems are capable of sustaining high rates of plant inputs and soil organic

matter turnover, but also can sequester up to twice as much soil C when compared to temper-

ate environments under zero-tillage [54]. The measured annual gains in SOC after the two

years of the study is greater than similar studies in shallower soils of a temperate system (i.e.,

0.10–1.0 Mg C ha-1 yr-1 in the top 30 cm [9]) and a tropical system with a fallow grassland

starting point (i.e., up to 3.87 Mg C ha-1 in 30cm [21]). Similarly, soil C stock in the top 50-cm

increased at a rate of 5 Mg C ha-1 yr-1 over five years of measurement in Texas under energy

sorghum, which is not a zero-tillage system, cultivated on former, intensively-managed cotton

lands [55]. Increasingly, evidence suggests that deep soil C dynamics play a critical role in driv-

ing total C stocks and response to perturbation such as land use and climate change [56,57].

Fig 4. Species-specific root biomass and depth distribution. Total root biomass (year 1 plus year 2) by

depth for napiergrass (a) and sugarcane (b); values are means (± one standard error).

doi:10.1371/journal.pone.0168510.g004
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Soils in the tropics and sub-tropics often are deep and rich in Fe-oxides clays that promote soil

aggregation and associated beneficial physical properties that help support high productivity

in agroecosystems. The greater depth of our soil C stock measurements alone accounts for

some of the difference in magnitude between our results and many others. Sugarcane and

napiergrass varieties can be bred to select for robust root systems capable of establishing and

maintaining an extensive rhizosphere and growing very deep in search of water. The napier-

grass variety was chosen for this trial based on early indicators of the potential for high above-

ground biomass and dense, deep rooting system. Selection of crops specifically for their high

productivity and partitioning of C resources belowground [58] likely also contributed to the

observed high soil C accumulation rates [21].

In some cases, priming of the deep soil system has led to net soil C losses when fresh organic

matter inputs are introduced to the deep soil profile [59]. Further, de Graaff et al. (2014) [60]

documented in switchgrass that priming losses were greater in surface soil than deep soil.

However in this case, the initial state of the belowground system was highly degraded follow-

ing over 100 years of intensive sugarcane cultivation that relied on burning, deep soil ripping,

and chemical fertilizers as part of the practice. As a result, prevalent soil C accumulation

occurred over two years from the baseline measurement in this study. Some indications of

fluctuations in soil C stock, particularly in napiergrass, are present likely in response to reach-

ing equilibrium in the rhizosphere as the root system develops in the first year and root death

and turnover occurs with each 6-month harvest cycle. In a previous study of napiergrass in

Hawaii, soil C accumulation following the conversion of a grassy field to ratoon management

Fig 5. Two years of soil carbon accumulation. Soil C stock at baseline versus year 2 for sugarcane and

napiergrass at 100% and 50% of the plantation irrigation level. Values are means (± one standard error);

n = 10 for the baseline soils, n = 3 for the trial plots.

doi:10.1371/journal.pone.0168510.g005
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was driven by high root biomass inputs and rapid root decomposition [21]. Soil C gains often

resulted from microbial byproducts and biomass accumulation [61,62], particularly if the soil

has biological, chemical, and physical properties that promote organic matter stabilization

[63]. Zero-tillage systems promote active rhizospheres with high microbial diversity [64] and if

those communities have high C use efficiency [65] and promote soil aggregation, then non-lin-

ear relationship between inputs and soil C accumulation can occur.

In combination, high productivity, belowground partitioning, high C use efficiency, stabili-

zation of organic matter and microbial byproducts in soil aggregates promoted by both zero-

tillage management and inherent mineralogy, and high clay content could result in the

observed high initial C accumulation rates of this system. High clay content and concentration

of iron-oxides contribute to good soil physical properties and further protect C within aggre-

gates and organo-mineral interactions. These factors, along with the high inputs of organic

matter from roots and the associated rhizosphere to depth of up to 1.4m on these plots suggest

that SOC stocks in this system, starting from a highly degraded state, potentially increase even

over short time scales. Rapid accumulation in the early phases of a management change will

attenuate over time. More annual measurements and simulation of soil C accumulation with

empirical or process models can help project longer-term patterns in these continuous ratoon

systems.

Conclusions

Linkages between harvest frequency, fine root turnover, and SOC accumulation occur in

perennial grass systems [9,21,62] and the potential for climate change mitigation in soil carbon

sequestration is important for long-term sustainability of bioenergy feedstock production

within a renewable energy system. Many agroecosystems lose SOC during initial land conver-

sion, but our results demonstrate the potential to sequester SOC in both of the sugarcane and

napiergrass feedstock scenarios if conservation management practices, such as ratoon harvests

and reduced tillage operations, are implemented. The environmental sustainability of feed-

stock production depends on a combination of water, fertilizer, and harvest management to

maximize crop yield while reducing losses of C and greenhouse gases from soils. Reducing irri-

gation by 50% resulted in the lowest GWP for both species, but the tradeoff between reduced

yields and improved GHG production and SOC accumulation ultimately determines the long-

term sustainability of these systems in Hawaii. Shifting from conventional sugarcane to

ratoon-harvested napiergrass is likely to have multiple benefits including a diversified agricul-

tural system, reduced irrigation water requirement, improved energy security, and more sus-

tainable GWP of the landscape.
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